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Abstract— In this paper, we develop a theory of computable
types suitable for the study of control systems. The theory uses
type-two effectivity as the underlying computational model, but
we quickly develop a type system which can be manipulated
abstractly, but for which all allowable operations are guaran-
teed to be computable. We apply the theory to the study of
hybrid systems, reachability analysis, and control synthesis.

I. INTRODUCTION

For almost all important problems in control theory,
including systems analysis, control synthesis and verifica-
tion/validation, the use of digital computers to study mathe-
matical models of the system is ubiquitous and indispensable.
For system models in continuous time and space, numerical
methods based on approximate floating-point arithmetic and
convergent algorithms are usually used. While this is suffi-
cient in most cases to obtain an understanding of the system
behaviour and to obtain practical solutions to sufficiently
robust control problems, in some cases we would like better
guarantees than can be provided by approximate numerical
methods. This may be the case if the system is safety-
critical, if experimental testing of a proposed controller
is infeasible or prohibitively expensive, if the problem is
particularly sensitive to small changes in the system or its
environment, or if there are reasons to mistrust the results
of a numerical analysis. Ideally, we would like to develop
numerical methods for which rigorous conclusions can be
made about the system properties, such as that a controlled
system satisfies its specification.

Unfortunately, as is well-known in the computer science
literature, not all problems can be solved by digital com-
puters. Another difficulty which arises when dealing with
control systems is that many of the objects we must deal
with, such as points in Euclidean space or continuous func-
tions, are uncountable, and so cannot be represented exactly
with a finite amount of data. We are therefore confronted
with two problems, namely what is the best way to represent
the objects of interest in a computational setting, and which
operations (system properties) can we effectively compute in
terms of these representations?

There are a number of existing approaches to continu-
ous mathematics in which such computational issues are
considered, form informal treatments in constructive anal-
ysis [BB85], through more formal approaches using domain
theory [GHK+03] or locale theory [Joh02], to the low-
level theory of type-two effectivity [Wei00] and realizability
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theory [Bau00]. Each of these approaches has its advan-
tages and disadvantages. Constructive analysis is closest to
“working mathematics”, and thus is easiest to work with,
but the relationship to computation is unclear. The formal
approaches of as domain and locale theory are powerful,
but the terminology is sometimes obscure and they are
not set up directly as a theory of computation (though
the relationship with computation can be formalised). The
theory of type-two effectivity provides a direct connection
with digital computation, but has a cumbersome notation
which makes it unwieldy to work with. However, at their
core, each of these theories is based on approximation in
topological and metric spaces, and the relationship between
infinite data, representing the object of interest, and finite
data, representing approximations.

The aim of this paper is twofold. Firstly, to give an
exposition of a formal theory of computation in analysis
which has a direct relation with machine computation is easy
to understand and use for the mathematician or engineer,
and powerful enough to deduce computability for several
important properties of control systems. We use type-two
effectivity to provide a direct link with real computation,
but hide the low-level details in a theory of data types which
can then be manipulated in a natural way. Secondly, to apply
this theory to some important problems in control theory, in-
cluding the evolution of hybrid systems, reachability analysis
and control synthesis. We typically prove that an operator is
computable by giving a high-level algorithm in terms of other
computable operations.

We note that the purpose of the paper is to discuss issues
of computability, that is, which problems can or cannot
be effectively solved by digital computers. While it is also
important to consider the computational complexity of the
problem, and the design and implementation of practical
and efficient algorithms, these considerations are beyond
the scope of this paper. However, we believe that most
problems of global analysis in nonlinear systems are likely
to be intrinsically of exponential complexity in the state-
space dimension, though for robust problems it should be
able to develop rigorous state-space decomposition and re-
duction techniques to allow realistic industrial examples to
be considered.

The paper is organised as follows. In Section II, we
develop a theory of computable types for spaces of points,
sets and functions. In Section III we apply the type theory to
the study of nondeterministic dynamical systems, including
multivalued maps and differential inclusions. In Section IV
we apply the type theory to the study of control systems.



II. COMPUTABLE ANALYSIS AND TYPE THEORY

In this section, we develop a computable type theory for
the mathematical objects which we need to study control
systems. The theory is based on the theory of type-two
effectivity of Weihrauch [Wei00], though the development
here is more abstract, similar to that of Schröder [Sch02],
[BSS07] and Escardo [Esc04].

A. Type theory

In a standard type theory (see [Bar84]), we start from a
collection of base types in some category, and construct new
types as products X × Y and exponentials (functions) Y X

(alternatively denoted X → Y ) in the category. The most
important relationship between products and exponentials
is an isomorphism between the type ZX×Y and the type
(ZY )X via the bijection f 7→ f̂ defined by f̂(x)(y) =
f(x, y). In the category of sets, products correspond to the
normal Cartesian product, and exponentials to functions from
X to Y . A category is Cartesian closed if we can form
products and exponentials with the required properties. The
category of sets and functions is Cartesian closed.

In developing a computable type theory, we need to give
a way of representing or naming objects of a type in a
computational setting, and in determining which functions
between objects are computable, in the sense that there is a
program transforming a name of the argument into a name
of the result. We will use binary sequences as names, and
the computable functions will be closed under composition.

We are interested in computable types which are topolog-
ical spaces, and for which the representation is admissible
with respect to the topology. The full category of topological
spaces and continuous maps is not Cartesian closed, so is
unsuitable for developing a type theory. However, the full
subcategory of quotients of countably-based (QCB) spaces,
is Cartesian closed (see [ELS04]), and the resulting types can
always be given a computable structure by means of admissi-
ble representations [Sch02]. Further, these spaces include all
spaces encountered in the study of finite-dimensional control
systems, including the real numbers, Euclidean space, mani-
folds, continuous functions on these spaces, and hyperspaces
of open, closed and compact sets.

In order to develop a type theory, we start with some
fundamental base types, including types of natural numbers
N, integers Z and real numbers R. We also need a type
X for the state space, and types for the inputs, distur-
bances and outputs. From these base types, we can construct
types of continuous functions C(X,Y) as YX. In order to
construct types representing sets, we will also need the
Sierpinski type S with elements S = {>, ↑} and open sets
{{ }, {>}, {>, ↑}}. Here, > denotes “true”, and ↑ denotes
“divergent” or “don’t know”, and can be thought of as
representing the result of a computation which never halts.
The type of open subsets of X can then be identified with
the type SX, since a set U ⊂ X is open if, and only if,
inclusion x ∈ U defines a continuous function ∈U : X → S.

B. Machine-computability

We fix a finite alphabet Σ, and give the space Σω the prod-
uct topology. In particular, Σω is a countably-based, locally-
compact zero-dimensional Hausdorff space. By considering
type-two Turing machines [Wei00, Chapter 2] working on
streams of data identified with Σω , we define a set of
computable stream functions, which are partial functions
η :⊂ Σω × · · · × Σω → Σω whose domain is a Gδ set.
(Recall that a Gδ-set is a countable intersection of open sets.)
The set of computable stream functions is countable and
closed under composition. We also define the uncountable set
of continuous stream functions to be the continuous partial
functions η :⊂ Σω × · · · × Σω → Σω with Gδ-domain.

In this paper, we do not need to concern ourselves with the
exact definition of computable stream function. However, we
will need the following results on continuous and computable
functions, which can be found in [Wei00, Chapter 3].

Theorem 2.1:
1) There exists a surjective function δ:⊂Σω→C(Σω; Σω)

whose range consist of all continuous stream functions
and a computable stream function ε : Σω ×Σω → Σω

such that δ(p)(q) = ε(p, q) for all q.
2) There exists a computable function Σ∗ → Σω whose

range consists of all elements of dom(δ) corresponding
to machine-computable functions.

C. Computable types

In this section, we show how to define computable struc-
tures on mathematical objects, notably topological spaces.

Definition 2.2 (Representation): A representation of a set
M is a partial surjective function δ :⊂ Σω → M whose
domain is a Gδ set.

Representations δ1 and δ2 of M are equivalent if there are
computable stream functions η1, η2 such that δ1 ◦ η1 = δ2
and δ2 ◦ η2 = δ1.

Definition 2.3 (Computable type): A computable type is
an equivalent class of pairs (M, δ), where (M, δ1) is equiv-
alent to (M, δ2) if δ1 and δ2 are equivalent representations.
We shall usually denote a computable type with underlying
set M by M or M.
The following definition shows how representations induce
a computable structure on general sets.

Definition 2.4 (Computable function): Let f : M1×· · ·×
Mk → Y be a function, and δMi :⊂ Σω → Mi and
δY :⊂ Σω → Y be representations. Then a continu-
ous stream function η :⊂ (Σω)k → Σω realises f if
f(δX1(p1), . . . , δXk

(pk)) = δY (η(p1, . . . , pk)) for all pi ∈
dom(δi). We say f is computable if it is realised by a
computable stream function.
By a slight abuse of terminology, we will sometimes say that
x0 is computable from x1, . . . , xk if x0 = f(x1, . . . , xk) for
some computable function f .

Recall that a continuous function δ : A→ X is a quotient
map if whenever φ : A → Y is continuous and δ(p) =
δ(q) =⇒ φ(p) = φ(q), then there exists a continuous
function g : A → Y such that φ = g ◦ δ. A continuous
function δ : A → X is universal, if whenever φ : A → X



is continuous, there exists a continuous function η : A→ A
such that φ = δ ◦ η.

Definition 2.5 (Admissible representation): An represen-
tation δ of a topological space (X, τ) is admissible repre-
sentation if it is a universal quotient map.
We require an admissible representation of a topological
space to be a universal so that it captures all the topological
information about a space. We require it to be a quotient
map so that continuity on (X, τ) is reflected in Σω . The
standard representations of a second-countable Kolmogorov
(T0) space as defined in [Wei00, Chapter 3] are always
admissible in the above sense.

Theorem 2.6: Let δX , δY be admissible representations of
spaces X and Y .

1) If f : X → Y is continuous, then there exists a
continuous stream function η such that dom(η) =
dom(δX) and δY ◦ η = f ◦ δX .

2) Suppose f : X → Y , and there exists a continuous
stream function η such that f ◦ δX = δY ◦ η. Then f
is continuous.

The first part of the theorem says that any continuous func-
tion has a realiser; the second implies that any computable
function is continuous.

In general there are many non-equivalent representations
admissible for a given topological space. The following
theorem [Bau00] asserts the existence of a canonical type
R for the real numbers.

Theorem 2.7: There is a unique equivalence class of ad-
missible representation of R making arithmetic computable,
and comparison < semidecidable. We call the corresponding
type the real number type, denoted R.

D. Types of continuous functions

We now give the main results of computability of op-
erations on continuous functions. The first theorem asserts
computability of the fundamental operations on types.

Theorem 2.8: Let X , Y and Z be spaces with admissible
representations δX , δY and δZ respectively. Let X, Y and Z
denote the types of (X, δX), (Y, δY ) and (Z, δZ). Then there
is a computable bijection between the types C(X,Y; Z) and
C(X; C(Y,Z)) taking f to f̂ , where f̂(x)(y) = f(x, y).
The next theorem asserts computability of function evalua-
tion.

Theorem 2.9: Let X and Y be spaces with admissible
representations δX and δY . Then there is a representation
δ[X→Y ] of C(X;Y ) such that evaluation ε(f, x) = f(x) is
a computable function from C(X;Y ) × X to Y . Further,
any two such representations are computably equivalent, so
define a canonical type C(X; Y).
The last theorem shows that if we can effectively evaluate a
function f : X → Y , then we can compute a name. We will
repeatedly use this result to prove computability of a function
type by showing that it can be effectively evaluated.

Theorem 2.10: Suppose X and Y are computable types,
and f : X → Y . Then given an algorithm to effectively
evaluate f(x) for all x ∈ X , we can effectively compute a
name for f in C(X; Y)

E. Point and set types
We now use the computable function types to derive the

set types we need to study systems. In addition to the
well-known classes of open, closed and compact sets, we
introduce a computable type which we call the overt set type.
Objects of this type are closed sets, but the data describing
an object is different from that of the closed set type.

Definition 2.11 (Types of set):
1) We identify the type of open sets, denoted O(X) with

the type of continuous function X → S by fU (x) =
> ⇐⇒ x ∈ U .

2) We identify the type of closed sets, denoted A(X) with
the type of continuous function X → S by fA(x) =
> ⇐⇒ x 6∈ A.

3) We identify the type of overt sets, denoted V(X)
with continuous functions gA : O(X) → S satisfying
gA(U ∪V ) = gA(U)∨gA(V ). Then gA defines a point
set A by x ∈ A ⇐⇒ gA(U) = > whenever x ∈ U .
Also, A = cl rng(g̃A) for some g̃A : N→ X

4) We identify the type of compact sets, denoted K(X)
with continuous functions hC : O(X) → S satisfying
hC(U∩V ) = hC(U)∧hC(V ). Then hC defines a point
set C by x ∈ C ⇐⇒ x ∈ U whenever hC(U) = >.
Also, C = rng(h̃C) for some h̃C : {0, 1}ω → X.

Remark 2.12: In applications to control theory, open sets
are often used in the specification of a system behaviour, such
as a set of safe states, or a set of target states. Overt sets are
used when we wish to consider existential properties of the
behaviour of a system, such as the set of points reachable
for a particular choice of control strategy. Compact sets are
used when we with to consider universal properties of the
behaviour of a system, such as the set of points reachable
under all possible disturbances.
Most of the basic set-theoretic operations, including union
and intersection, are computable without additional assump-
tions on X . However, we will sometimes need to work in
Hausdorff spaces with a computable apartness relation.

Definition 2.13: X is a effectively separated if the function
s : X× X→ S, s(x, y) = > ⇐⇒ x 6= y is computable.
We have the following computability results on set types.
The proof is entirely straightforward using Definition 2.11
and Theorem 2.10.

Theorem 2.14: The following operations are computable:
1) Finite intersection O × O → O and arbitrary union
ON → O.

2) Finite union A × A → A and arbitrary intersection
AN → A.

3) Complement O → A and A → O.
4) Countable union VN → V and finite union K×K → K.
5) Finite intersection V ×O → V and K ×A → K.
6) Singleton X → V and X → K.
7) If X is effectively separated, closure O → V and

identity K → A.
8) Closed convex hull V→ V and convex hull K→ K.
9) Preimage C(X; Y)×O(Y)→ O(X).

10) Image C(X; Y) × V(X) → V(Y) and C(X; Y) ×
K(X)→ K(Y).



III. COMPUTABILITY FOR NONDETERMINISTIC SYSTEMS

We now use the computable type theory developed in the
previous section to give some results on computable prop-
erties of dynamic systems. When considering solutions of
nondeterministic systems, we are often interested in function
spaces with set-valued types.

A multivalued map is a function F : X → P(Y ), where
P(Y ) is the set of all subsets of Y . For a set A ⊂ X , we
define F (A) =

⋃
{F (x) | x ∈ A}. For B ⊂ Y , we define

F�1(B) = {x ∈ X | F (x) ∩ B 6= ∅} and F�1(B) = {x ∈
X | F (x) ⊂ B}. Note that F�1(B) = X \ F�1(Y \ B).
For F : X → P(Y ) and G : Y → P(Z), we define G ◦ F :
X → P(Z) by G◦F (x) = G(F (x)). We say that F is lower-
semicontinuous if F�1(V ) is open whenever V is open, and
upper-semicontinuous if F�1(B) is closed whenever B is
closed (equivalenty, F�1(V ) is open whenever V is open).

A. Spaces of multiflows

The set of solutions of a dynamic system is the space
of continuous functions ξ : T → X , where T is the time
domain, and X is the state space. For an autonomous system,
we require time-invariance, that if ξ is a solution and s ∈ T ,
then the function defined by η(t) = ξ(t+s) is also a solution.
We also require the property of state, that if ξ and η are
solutions with ξ(s) = η(s), then there is a solution ζ with
ζ(t) = ξ(t) for t 6 s, and ζ(t) = η(t) for t > s.

For a deterministic system, there is only one trajectory
through a given initial state. The solution space may be
represented either as a function φ : X × T → X , or as a
function φ̂ : X → C(T ;X). By the exponentiation property,
the types X× T→ X and X→ C(T; X) are equivalent.

In a nondeterministic system there may be may different
trajectories with the same initial state. If the time domain is
R, we call the resulting dynamics a multiflow. The simplest
way of representing the solution space is as the behaviour
of the system, which is simply the set of all solutions,
Φ ∈ P(C(T ;X)). However, we can also represent the
solution space as the function Φ̂ : X → P(C(T ;X))
such that Φ̂(x) = {ξ ∈ Φ | ξ(0) = x}. Another useful
representation is in terms of the finite reachability operator,
Φ̃ : X × T → P(X).

The following lemma gives relations between the different
representations of multiflows.

Lemma 3.1:
1) The types Φ̂ : X → K(C(T; X)) satisfying ξ(0) = x

for all ξ ∈ Φ̂(x), and the types Φ̃ : X × T → K(X)
are equivalent. We can also compute Φ̂ from Φ, and Φ
from Φ̂ if X is compact.

2) if T = R, the type Φ̂ : X → V(C(T; X)) is contains
strictly more information than both Φ ∈ V(C(T; X))
and Φ : X× T→ V(X). The latter are incomparable.

B. Computability theory for multivalued maps

We now consider computability for nondeterministic sys-
tems in discrete-time. We first give a result on the com-
putability properties of continuous functions F from X to a

hyperspace of subsets of Y ; in particular, for F : X → V(Y )
and F : X → K(Y ).

Theorem 3.2: The following are computably equivalent:
1) F : X → V(Y), F�1 : O(Y) → O(X) and F :

V(X)→ V(Y).
2) F : X → K(Y), F�1 : A(Y) → A(X) and F :

K(X)→ K(Y).
We can use these properties to compute the forward-time
evolution of discrete-time nondeterministic systems.

Corollary 3.3: The behaviour of a discrete-time system is
computable in the following cases:

1) If f : X → X, then φ̂ : X → C(N,X) is computable
from f .

2) If F : X → V(X), then Φ̂ : X → V(C(N,X)) is
computable from F .

3) If F : X → K(X), then Φ̂ : X → K(C(N,X)) is
computable from F .

C. Computability theory for differential systems

We now consider the computability of systems defined
by differential equations or differential inclusions. For sim-
plicity, we assume that X is a Euclidean space, though the
results extend to differential manifolds and locally-compact
Banach spaces. To prove the results of this section we need
to go back to first principles to solve the differential systems,
including the classical Arzela-Ascoli and Michael theorems.

Theorem 3.4: Let f : X → X be locally-Lipschitz
continuous. Then the solution operator of ẋ = f(x) is
computable C(X; X)× X→ C(R,X).
The proof is essentially standard [DM70]. The locally-
Lipschitz condition can be weakened to to simply requiring
uniqueness of solutions [Ruo96].

We now turn to nondeterministic differential systems as
defined by differential inclusions ẋ ∈ F (x). For an in-
troduction to differential inclusions, see [AC84]. Following
the well-known solution concept of Filippov, we may first
need to compute the convex hull of the right-hand side. The
continuous case was proved in [PVB96], but easily splits into
the lower- and upper-semicontinuous cases. Full proofs can
be found in [CG09].

Theorem 3.5:
1) Let F be locally-Lipschitz lower-semicontinuous with

closed convex values. Then the solution operator
(F, x) 7→ Φ̂F (x) of ẋ ∈ F (x) is computable
C(X; V(X))× X→ V(C(R,X)).

2) Let F be upper-semicontinuous with compact convex
values. Then the solution operator of ẋ ∈ F (x) is
computable C(X; K(X))× X→ K(C(R,X)).

IV. COMPUTABILITY IN CONTROL THEORY

In this section we now give some applications of the
computability type theory to problems in control and systems
theory. We focus on three problems, namely the evolution of
hybrid systems, computation of reachable and viable sets,
and control synthesis. Note that using the computable types
developed earlier, many of the proofs are almost trivial.



A. Evolution of hybrid systems
A hybrid system comprises continuous evolution inter-

spersed with discrete jumps. Since from Section III, the
evolution of continuous- and discrete-time systems are com-
putable, we focus on the problem of event detection. An
event occurs whenever the state of the system crosses a guard
set G Consider the case of a hybrid system defined as the
tuple (X,F,G,R), where ẋ ∈ F (x) defines the continuous
dynamics, the guard set G is crossed when g(x) = 0, and
the reset is given by x′ ∈ R(x).

Suppose ξ(t) is a continuous trajectory with g(ξ(0)) < 0,
and g(ξ(t)) > 0 for some t > 0. Then clearly the trajectory ξ
crosses the guard set at some time. We define the hitting time
τh by τh(ξ) = sup{t ∈ R | g(ξ(t)) < 0} and the crossing
time τc as τc(ξ) = inf{t ∈ R | g(ξ(t)) > 0}. Clearly τh(ξ) 6
τc(ξ), but the two need not be equal, in general. If τh(ξ) =
τc(ξ), then we say that ξ crosses g transversely at τ = τh(ξ).
Otherwise, it may be the case that ξ(t) slides along the guard
set G between τh and τc, or grazes G before crossing later.
We define the touching time set as τ(ξ) = {t ∈ R | g(ξ(t)) =
0 ∧ ∀s 6 t, g(ξ(s)) 6 0}.

Lemma 4.1: The set of trajectories ξ with g(ξ(0)) < 0 and
g(ξ(t)) > 0 for some t > 0 is computable in O(C(R; X)).

Theorem 4.2: The touching time set τ(g, ξ) is computable
as a function C(X,R) × C(R,X) → A(R). If g(ξ(t)) > 0
for some t > 0, then τ(g, ξ) can also be computed in K(R).

Proof: Define γξ,g(t) = g(ξ(t)) and µξ,g(t) =
sup{g(ξ(s)) | s ∈ [0, t]} which is a computable function
(see [Wei00]). Then τ(g, ξ) = γ−1

ξ,g({0})∩µ−1
ξ,g((−∞, 0]) so

is computable. If g(ξ(t)) > 0, then τ(g, ξ) = τ(g, ξ)∩ [0, t],
so is effectively compact.

Theorem 4.3: Consider a hybrid system where F is
convex-compact-valued, and R is compact-valued. Then set
of points Ψ(X0) reachable after the first event is computable
as a compact set.

Proof: The set of points reachable after the first event of
a continuous solution ξ is R(ξ(τ(g, ξ)), which is computable
in K(X) from ξ ∈ C(R; X). The set of trajectories with inital
condition X0 is ΦF (X0), so is computable in K(C(R; X)).
Then Ψ(X0) is the union of R(ξ(τ(g, ξ)) for ξ in the
compact set ΦF (X0), so is computable in K(X).
Unfortunately, the set of points reachable after the first event
is not computable as an overt set. In this case, event detection
is easier in the context of backwards reachability

Theorem 4.4: Consider a hybrid system where ΦF is an
overt multiflow and R is overt-valued. Let V be an open set.
Define Ψ�1(V ) to be the set of points for which there is
a solution for which the state is in V immediately after the
first jump. Then Ψ�1(V ) is computable as an open set.

Proof: The trajectory ξ crosses G in R−1(V ) if
ξ(τ(g, ξ)) ⊂ V . Since R : X → V(X), U = R�1(V )
is computable in O(X). Since τ(g, ξ) is compact and ξ
is continuous, W = {ξ | τ(g, ξ) ⊂ U} is computable
in O(C(R; X)). Since Φ : X → V(C(R; X)), Φ�1(W )
is computable in O(X). We have Ψ�1(V ) = {x | ∃ξ ∈
ΦF (x) s.t. ξ(τ(g, ξ)) ⊂ R−1}) = Φ�1

F ({ξ(τ(g, ξ)) ⊂
R�1}), so Ψ�1(V ) is computable in O(X).

B. Reachable and viable sets

We now apply the results of Section III-B to prove
computability of some infinite-time operators in discrete-time
dynamical systems. Computability of the viability kernel was
considered in [SP94], and of reachable sets was considered
in [Col05]. Some extensions to hybrid systems are given
in [ALQS02], [GT06].

We will need the following result, which shows that we
can separate compact and closed sets.

Lemma 4.5: There is a recursively enumerable set D of
pairs (A◦, A) ∈ O × K such that for any compact K and
open U , there exist (A◦, A) such that K ⊂ A◦ and A ⊂ U .
We define the reachable set of a system F : X → P(X)
with initial state set X0 as

reach(F,X0) = {x ∈ X | ∃ solution ξ of F and t ∈ T
with ξ(0) ∈ X0 and ξ(t) = x}.

Theorem 4.6: The reachable set operator reach is com-
putable as a function C(X; V(X))× V(X)→ V(X), but not
as a function C(X; K(X))×K(X)→ K(X).

Proof: We can write reach(F,X0) =
⋃∞
i=0Ri, where

R0 = X0 and Ri+1 = Ri ∪ F (Ri). Then reach :
C(X;V(X)) × V(X) → V(X) is computable since all
operations are computable. However, reach fails to be com-
putable from C(X; K(X)) × K(X) to K(X) even if X is
compact since it is easy to show that reach is not upper-
semicontinuous in parameters, as in Example 4.7.

Example 4.7: Consider the system f : R→ R defined by
fε(x) = ε+x+x2−x4. Then reach(f0, {−1/2}) ⊂ [−1, 0],
but reach(fε, {−1/2}) 6⊂ [−1, 1/2] for any ε > 0.
We define the chain-reachable set of F as limit of all ε-
orbits, or equivalently as

chain reach(F,X0) =
⋂
{U ∈ O(X)|

cl(U) is compact, and X0 ∪ F (cl(U)) ⊂ U}.
Theorem 4.8:

Proof: It is clear that chain reach(F,X0) =
⋂
{A |

(A◦, A) ∈ D and X0∪F (A) ⊂ A◦}, proving computability.
The proof of optimality involves considering perturbations,
and can be found in [Col07].

The viability kernel of a multivalued map F and a set S
is given by

viab(F, S) = {x ∈ X | ∃ solution ξ
s.t. x = ξ(0) and ∀t ∈ T, x(t) ∈ S}.

Theorem 4.9: The viability kernel operator viab(F, S) is
computable as a function C(X,K(X))× A(X)→ A(X).

Proof: Write viab(F,A) =
⋂∞
i=0 Si, where S0 = S

and Si+1 = Si ∩ F�1(Si).
The viability kernel is not computable as an open or overt
set. However, we can define a robust viability kernel

robust viab(F, S) = {C ∈ K(X) | C ⊂ S∩F�1(int(C))}.
Theorem 4.10: The robust viability kernel operator

robust viab(F, S) is computable as a function C(X,V(X))×
O(X)→ O(X).

Proof: Write robust viab(F, S) =
⋃
{A◦ | (A◦, A) ∈

D and A ⊂ S ∩ F�1(A◦)}.



C. Control synthesis

A noisy control system with state space X , input space U
and noise space V is a function f : X × U × V → X . We
assume that U is an overt space and V a compact space, and
define FU : X → P(X×U), FU (x) = {(x, u) | u ∈ U}, and
FV : X × U → P(X) by FV (x, u) = {f(x, u, v) | v ∈ V }.

The controllable set of ctrl(f, T, S) with target set T and
safe set S is determined recursively by T0 = T ∩ S and
Ti+1 = Ti∪{x ∈ X | ∃u ∈ U, ∀v ∈ V, f(x, u, v) ∈ Ti}∩S.

Theorem 4.11: The controllable set operator ctrl :
C(X,U,V; X)×O(X)×O(X)→ O(X) is computable.

Proof: The functions FU : X → V(X × U) and FV :
(X×U)→ K(X) can be computed from f , U and V . Write
Ti+1 = Ti ∪ (F�1

U (F�1
V (Ti)) ∩ S) and C =

⋃∞
i=0 Ti.

A state feedback control law is a function g : X → U .
Since there are systems which are controllable by a discon-
tinuous state feedback, but not a continuous feedback, we
first compute a supervisor, which is a multivalued function
G : X ⇒ U such that taking un ∈ G(xn) always gives a
valid trajectory. If G is open-valued, we can then construct
a deterministic feedback law by taking g(x) ∈ G(x).

Theorem 4.12: If ctrl(f, T, S) ⊃ X0, then there is a
computable supervisor G : X→ O(U).

Proof: From Ti+1 = Ti∪F�1
U (F�1

V (Ti)) and X0 ⊂ Tn,
find open Bi, Ci such that C0 ⊂ T , X0 ⊂

⋃n
i=0Bi, and for

all i, Ci ⊂ Bi and Bi+1 ⊂ F�1
U (F�1

V (Ci). For x ∈ Bi \⋃i−1
j=0 Cj , define Gi(x) = {u ∈ U | (x, u) ∈ F�1

V (Ci−1)},
and define G(x) =

⋃
{Gi(x) | x ∈ Bi \

⋃i−1
j=0 Cj}.

A system with partial observations with output space Y and
measurement noise space W is defined by f : X×U×V →
X and h : X ×W → Y . Define H(x) = {h(x,w) | w ∈
W}. An observer for the system takes values X̂ ∈ K(X),
with with initialisation X̂0 = X0∩H�1(y0) and update rule
X̂n+1 = F̂ (X̂n, un, yn+1) = FV (X̂n, un) ∩H�1(yn+1).

In order to guarantee control to the target set within the
safe set, we require X̂n ⊂ T for some n, and X̂i ⊂ S for all
i 6 n. We therefore define sets Ti ⊂ K(X) by T0 = {C ∈
K(S) | C ⊂ T} and Ti+1 = {C ∈ K(S) | ∃u ∈ U, ∀y ∈
Y, F̂ (C, u, y) ∈ Ti}. Note that {C ∈ K(X) | C ⊂ U} is
open in K(X) for U open in X . Then Ti+1 is the set of
all state estimates for which we can choose an input such
that the next state estimate is guaranteed to be in Ti. The
problem is solvable if, and only if, there exists n such that⋃n
i=1 Ti ⊃ {C ∈ K(X) | ∃y ∈ Y s.t. C = X0 ∩H�1(y)}.
The following theorem is given in [Col08].
Theorem 4.13: Define the controllable set operator ctrl by

X0 ∈ ctrl(f, h, S, T ) if X0 is controllable into T within
S under the system (f, h). Then ctrl : C(X,U,V; X) ×
C(X,W; Y)×O(X)×O(X)→ O(K) is computable.

In a similar way to the case of state feedback, we can
construct a supervisor G : K(X) → O(U) solving the
control problem. However, in order to realise the control
strategy, we need to replace the state estimator update F̂
by a finite automaton approximation, and the supervisor G
by a function on this automaton. This process is not entirely
straightforward since the space K(X) is not Hausdorff.

V. CONCLUSIONS

In this paper, we have developed a computable type theory
sufficient for allowing the analysis of control systems. We
have studied systems properties such as reachability and
viability, problems of control synthesis, and event detec-
tion in hybrid systems. Further extensions involve infinite-
dimensional systems and stochastic systems, verification of
system properties given by temporal logics, and consider-
ation of issues of computational complexity. Work is in
progress to provide efficient implementations of the com-
putable operators given here in the tool Ariadne [BCC+06].
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